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Shallow-depth whole-genome sequencing (WGS) of circulating cell-free DNA (ccfDNA) is a 
popular approach for non-invasive genomic screening assays, including liquid biopsy for early 
detection of invasive tumors as well as non-invasive prenatal screening (NIPS) for common fetal 
trisomies.  In contrast to nuclear DNA WGS, ccfDNA WGS exhibits extensive inter- and intra-
sample coverage variability that is not fully explained by typical sources of variation in WGS, such 
as GC content.  This variability may inflate false positive and false negative screening rates of 
copy-number alterations and aneuploidy, particularly if these features are present at a relatively low 
proportion of total sequenced content.  Herein, we propose an empirically-driven coverage 
correction strategy that leverages prior annotation information in a multi-distance learning context 
to improve within-sample coverage profile correction. Specifically, we train a weighted k-nearest 
neighbors-style method on non-pregnant female donor ccfDNA WGS samples, and apply it to 
NIPS samples to evaluate coverage profile variability reduction.  We additionally characterize 
improvement in the discrimination of positive fetal trisomy cases relative to normal controls, and 
compare our results against a more traditional regression-based approach to profile coverage 
correction based on GC content and mappability.  Under cross-validation, performance measures 
indicated benefit to combining the two feature sets relative to either in isolation. We also observed 
substantial improvement in coverage profile variability reduction in leave-out clinical NIPS 
samples, with variability reduced by 26.5-53.5% relative to the standard regression-based method 
as quantified by median absolute deviation.  Finally, we observed improvement discrimination for 
screening positive trisomy cases reducing ccfDNA WGS coverage variability while additionally 
improving NIPS trisomy screening assay performance.  Overall, our results indicate that machine 
learning approaches can substantially improve ccfDNA WGS coverage profile correction and 
downstream analyses. 
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1.  Introduction 

Circulating cell-free DNA (ccfDNA) is comprised of relatively short fragments of genomic 
material that naturally occur in bodily fluids and originate primarily from normal cell apoptosis1.  
A number of biomedical applications have been identified for shallow-depth whole-genome 
sequencing (WGS) of plasma ccfDNA, including liquid biopsy for early identification of invasive 
tumors2 as well as non-invasive prenatal screening (NIPS) for fetal genetic and genomic 
abnormalities3,4.  For downstream inference, these data are typically summarized by generating 
binned coverage profiles of the sequencing output, whereby the genome is uniformly partitioned 
into moderately sized contiguous regions (e.g., 10-50 kilobases (kb)) and count-based coverage is 
calculated by the enumerating the overlapping sequencing reads.  Evidence of copy-number 
variants (CNVs) and aneuploidy may be detected from these profiles using standard CNV 
detection methods for coverage data5. 

Coverage profile patterns for plasma ccfDNA WGS exhibit a large degree of non-uniformity 
relative to standard nuclear DNA WGS, which is in part attributable to biased preservation of 
DNA originating from regions that are protected from degradation by nucleases in the blood 
stream, including nucleosome- and protein-bound DNA6.  These patterns can in turn be exploited 
via deconvolution to identify evidence of tissue-of-origin admixture, and have been leveraged 
using machine learning methods to build fetal fraction predictors for NIPS7.  However, ccfDNA 
exhibits a large deal of inter-sample heterogeneity and GC-content correction only explains a 
moderate proportion of this variability.  In the context of NIPS and fetal trisomy detection, this 
may necessitate higher fetal-fraction quality control thresholds to achieve desired assay sensitivity 
and specificity, delaying recommended gestational age for the assay and leading to repeat maternal 
blood draws when estimated fetal fraction in too low. 

Previous studies have recognized the value of large-scale empirical coverage correlations in 
ccfDNA coverage profile NIPS analyses to address inter- and intra-sample variability.  For 
example, correlations of gross chromosomal read count proportions can be leveraged to improve 
trisomy detection8,9.  Straver et al.10 proposed WISECONDOR for coarsely binned (i.e., 1 Mb) 
micro-duplication and deletion detection using pair-wise empirical bin coverage similarity.  
Extension of these concepts to general profile bias correction under the small genomic bin sizes 
typical of ccfDNA coverage profiling is appealing, given the fine granularity of epigenomic 
variability that contributes to profile coverage heterogeneity.  However, application of algorithms 
like WISECONDOR for these small bin sizes is computationally challenging, as this requires 
calculating pair-wise bin similarities under a much larger bin dimensionality. 

In this paper, we explore computationally efficient machine learning strategies for improving 
within-sample coverage profile correction relative to standard regression-based methods 
commonly implemented for GC-content correction.  Using a large set of plasma ccfDNA WGS 
coverage profiles from NIPS analyses, we reformulate the problem as a simple k-nearest neighbors 
(kNN) regression approach and further propose methods to integrate prior knowledge captured in 
genomic annotation sources via a supervised multi-distance learning framework.  We compare 
coverage profile variability reduction in real NIPS maternal plasma ccfDNA WGS data, and 
additionally characterize potential improvement in discrimination of trisomy cases and negative 
controls for common fetal trisomies of 13, 18, and 21.  Finally, we discuss further research 
directions in the area of ccfDNA WGS coverage data analysis. 
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2.  Methods 

2.1.  Data description 

2.1.1.  Samples 

De-identified samples from research and clinical NIPS results conducted by the Genomics 
Laboratory at Mayo Clinic were considered eligible for this study.  Of these, we identified a 
total of 476 single fetus normal karyotype pregnancy samples, 145 positive trisomy samples 
(10 trisomy 13, 41 trisomy 18, 104 trisomy 21), and 790 non-pregnant female donor samples 
for our analyses.  Plasma was obtained from blood and stored in a Streck Cell-Free DNA 
Blood Collection Tube (Streck, Omaha NE).  Use of these data for research purposes was 
approved by the Institutional Review Board.  

2.1.2.  Shallow-depth whole-genome sequencing 

DNA was extracted from plasma using the Qiagen Circulating Nucleic Acid Kit (Qiagen, 
Venlo Netherlands) and library preparation was conducted using the Illumina TruSeq® Nano 
DNA Sample Preparation Kit (Illumina, San Diego CA). Sequencing was performed on the 
Illumina HiSeq 2500 in Rapid Run mode to generate 50-cycle single-end reads, which were 
aligned to the hg19 human genome reference using Novoalign (Novocraft, Selangor 
Malaysia).  Chromosomal coverage summaries for 50 kilobase (kb) contiguous genomic 
windows were generated from the resulting BAM files using the WANDY bioinformatics 
pipeline (http://bioinformaticstools.mayo.edu/research/wandy/), an in-house developed 
workflow for bin filtering, GC correction, and normalization of low-depth whole-genome 
sequencing output to identify copy-number variants and aneuploidy.  

2.1.3.  Bin data preprocessing 

A total of 57,633 50 kb autosomal genomic bins were initially pre-filtered using an in-house 
defined set of bins that were previously classified as being unreliable (e.g., poor mappability, 
repeat regions), resulting in 𝐵𝐵 = 49,867 bins (87%) under consideration.  Raw coverage values 
for remaining bins were defined as the number of ccfDNA sequencing reads whose start overlaps 
each bin. We then normalized coverage values within sample by dividing by the mean coverage 
value across bins.  We designate these intermediate coverage values as the 𝐵𝐵 × 𝑁𝑁 matrix 𝑿𝑿 for 
some 𝑁𝑁 set of observed coverage profiles.    

2.2.  Neighborhood-based coverage correction 

GC-content-based coverage correction methods can be conceptualized as clustering bins by a 
shared annotation characteristic, such that bin strata defined by the same GC value serve as the 
basis for removing the bias induced by the sample-specific GC-coverage relationship.  Similarly, 
empirical bin-to-bin similarity from retrospective data may improve coverage profile bias 
correction by identifying bins with similar empirical coverage patterns across multiple samples.  
WISECONDOR leverages a 𝐵𝐵 × 𝐵𝐵 dissimilarity matrix, 𝑫𝑫, defined by the squared Euclidean 
distance (SED) of bin pairs across samples, which is then used to identify reference bins for each 

Pacific Symposium on Biocomputing 25:599-610(2020)

601



given “target” bin.  These reference bins then serve as the expected distribution of that bin in a 
new sample, such that the mean and standard deviations are used to compute bin-wise Z-scores. 
Such reference sets can alternatively be conceptualized as bin neighborhoods, such that the 
problem is alternatively posed as a type of k-nearest-neighbors (kNN) regression analysis.   

2.2.1.  Weighted distance averaging 

Due to the high dimensionality of 𝐵𝐵 under small bin partitioning, we may additionally wish to 
leverage a priori knowledge about fixed genomic annotation features (e.g., GC content) which 
contribute to a large proportion of bin coverage variability.  Combining prior annotation 
dissimilarity with empirical dissimilarity measures in some supervised fashion is desirable, as the 
former could impart some form of regularization on empirical coverage dissimilarity measures and 
improve overall coverage correction performance, particularly if our training data suffers from 
small 𝑁𝑁 dimensionality relative to 𝐵𝐵.  This amounts to a supervised multi-distance learning 
problem, as we are seeking to optimally combine dissimilarities from two feature sets as a final 
input feature representation for model training. 

Consider any distance function whereby the dissimilarity measure between bins 𝑖𝑖 and 𝑗𝑗 with 
corresponding feature vectors 𝒙𝒙𝒊𝒊 and 𝒙𝒙𝒋𝒋 is the summation of pair-wise feature distances, such as 
the Manhattan or SED distance functions.  For the latter, this is defined by 

                                           𝑑𝑑�𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋� = �𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋�2
2

= ∑ �𝑥𝑥𝑖𝑖,𝑝𝑝 − 𝑥𝑥𝑗𝑗,𝑝𝑝�
2

𝑝𝑝   (1) 

If we have two feature sets 𝑿𝑿 and 𝒀𝒀 from which respective distance matrices 𝑫𝑫𝑿𝑿 and 𝑫𝑫𝒀𝒀 may be 
calculated using 𝑑𝑑(⋅,⋅), these can be efficiently combined under such a distance function by 
appropriately concatenating and weighting the feature vectors11.  Define 𝐷𝐷𝛼𝛼(𝑖𝑖, 𝑗𝑗) to be element 
(𝑖𝑖, 𝑗𝑗) in a 𝐵𝐵 × 𝐵𝐵 distance matrix defined as 𝑫𝑫𝜶𝜶 = (1 − 𝛼𝛼)𝑫𝑫𝑿𝑿 + 𝛼𝛼𝑫𝑫𝒀𝒀, where 𝛼𝛼 is a mixing 
parameter that defines the weighted contribution of each component distance matrix.  It is simple 
to show that 𝐷𝐷𝛼𝛼(𝑖𝑖, 𝑗𝑗) is equivalent to 𝑑𝑑(𝒛𝒛𝒊𝒊, 𝒛𝒛𝒋𝒋), where 𝒁𝒁 = [ √1 − 𝛼𝛼𝑿𝑿 √𝛼𝛼𝒀𝒀] is the weighted 
column concatenation of matrices 𝑿𝑿 and 𝒀𝒀, since 

               𝑑𝑑�𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗� = ∑ �𝑧𝑧𝑖𝑖,𝑝𝑝 − 𝑧𝑧𝑗𝑗,𝑝𝑝 �
2

𝑝𝑝 = (1 − 𝛼𝛼)∑ �𝑧𝑧𝑖𝑖,𝑝𝑝 − 𝑧𝑧𝑗𝑗,𝑝𝑝 �
2

𝑝𝑝∈𝒳𝒳 + 𝛼𝛼 ∑ �𝑧𝑧𝑖𝑖,𝑞𝑞 − 𝑧𝑧𝑗𝑗,𝑞𝑞 �
2

𝑞𝑞∈𝒴𝒴   (2) 

where 𝒳𝒳 and 𝒴𝒴 denote the respective feature sets unique to 𝑿𝑿 and 𝒀𝒀.  This relationship is 
computationally advantageous, as being able to concatenate the feature spaces in this manner 
facilitates the use of rapid distance calculation algorithms that identify the leading 𝑘𝑘 neighbors and 
their corresponding distances within a single input feature set, rather than computing the complete 
distance matrices 𝑫𝑫𝑿𝑿 and 𝑫𝑫𝒀𝒀 prior to weighted combination, which is computationally and 
memory intensive.  Additionally, optimization over 𝛼𝛼 provides information on relative 
contributions of “prior” and “observed” data from 𝒀𝒀 and 𝑿𝑿, respectively.  

To implement this approach, we applied the kd-tree searching functions for nearest neighbor 
indices and distances as implemented by the FNN R package, which support fast Euclidean 
distance calculations for the 𝑘𝑘 nearest neighbors via the approximate near neighbors C++ library12. 
Since the relationship between SED and Euclidean distance is monotone, this is equivalent for 
identifying nearest neighbors under SED (although the output distances can be squared to maintain 
SED distance values).  To also ensure distances are comparable across the feature sets prior to 
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combining, we adopted the double-scaled Euclidean approach for distance normalization, whereby 
column 𝑝𝑝 in 𝒁𝒁 is further divided by �𝑣𝑣𝒮𝒮 ⋅ 𝑑𝑑𝑝𝑝, where 𝑣𝑣𝑠𝑠 is the column dimensionality of the 
respective feature set 𝑆𝑆 ∈ {𝒳𝒳,𝒴𝒴} to which 𝑝𝑝 originally belongs, and 𝑑𝑑𝑝𝑝 is the maximum potential 
distance for feature 𝑝𝑝 as defined by �max𝑖𝑖�𝑧𝑧𝑖𝑖,𝑝𝑝� − min𝑖𝑖�𝑧𝑧𝑖𝑖,𝑝𝑝��

2
. 

2.2.2.  Genomic annotation 

For this analysis, we designate the prior annotation information 𝒀𝒀 to be comprised of two specific 
genomic bin annotation sources:  (1) GC content and (2) mappability scores, such that 𝒀𝒀 is 𝐵𝐵 × 2.  
Both of these have strong a priori relationships with coverage profile variability, as depicted in 
Figure 1.  
 

 
Fig. 1. Example coverage relationships with GC content and mappability for a given sample. 

2.3.  Standard annotation-based correction 

GC content can heavily influence coverage profiles derived from WGS13, and a standard pre-
processing step for WGS coverage profile data prior to CNV analysis is within-sample GC-content 
correction.  For a given sample, genomic bins are typically stratified by a shared GC content value 
and the mean or median stratum-specific coverage value (often with additional lowess smoothing) 
is used for further normalization.  Herein, we fit generalized additive models (GAMs) using the 
gam R package, where smooth functions are fit using GC content and mappability values as 
predictors for observed bin coverage for a given sample.  Observed raw coverage values were then 
divided by the predicted coverage values produced by the fitted model, such that corrected 
coverage values are non-negative with an expectation of 1. 
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2.4.  Proposed coverage correction approach  

Since bins within the physical neighborhood of a given bin (i.e., in cis) may also have a higher 
likelihood of having highly correlated coverage, including these bins in the correction procedure 
may inadvertently over-correct true copy-number alterations that overlap those bins.  This is 
particularly true in the instances of aneuploidy, where abnormal numbers of chromosomes could 
be less detectable if neighborhoods were largely comprised of cis bins.  Thus, we restrict the 
potential neighboring bins to be those in 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with the candidate bin 𝑏𝑏, such that they occur on 
different chromosomes than 𝑏𝑏.  To facilitate this, we split the data by individual chromosomes and 
their complement, such that bins in the chromosome of interest are queried against the 
complement for nearest neighbors in the combined feature space.  This also allows for 
parallelization and improves overall training computational efficiency. 

For coverage correction, we considered both an unweighted and dissimilarity-weighted kNN 
(wkNN) strategy for within-sample coverage correction, such that raw coverage values of the 𝑘𝑘 
nearest trans bins are used to generate a mean prediction for said bin.  That is, for a 𝐵𝐵 × 1 vector 𝒙𝒙 
of raw coverage profile data for a new sample, we define the predicted coverage for bin 𝑖𝑖 as 
𝑥𝑥�𝑖𝑖 = 1

∑ 𝑤𝑤𝑖𝑖,𝑗𝑗𝑗𝑗∈𝒦𝒦𝑖𝑖
∑ 𝑤𝑤𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗∈𝒦𝒦𝑖𝑖  where 𝒦𝒦𝑖𝑖 is the size 𝑘𝑘 neighboring set for bin 𝑖𝑖 and 𝑤𝑤𝑖𝑖,𝑗𝑗 is defined as 

1/𝐷𝐷𝛼𝛼(𝑖𝑖, 𝑗𝑗) for the distance-weighted approach and 𝑤𝑤𝑖𝑖,𝑗𝑗 = 1∀𝑖𝑖, 𝑗𝑗 in the unweighted version.  To 
perform coverage correction, we again define 𝑥𝑥𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝑖𝑖

𝑥𝑥�𝑖𝑖
, such that the observed value is divided 

by the predicted value.  More generally, the “model” itself can be represented simply by a 𝐵𝐵 × 𝐵𝐵 
sparse weight matrix 𝑾𝑾 where 𝑊𝑊𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑖𝑖,𝑗𝑗 for (𝑖𝑖, 𝑗𝑗) ∈ {𝒦𝒦1

∗, … ,𝒦𝒦𝐵𝐵
∗} where 𝒦𝒦𝑖𝑖

∗ are of tuples 
corresponding to the query bin 𝑖𝑖 and its neighboring bins 𝒦𝒦𝑖𝑖, and 0 otherwise, and 𝒙𝒙� = 𝑾𝑾𝑾𝑾. 

2.5.  Performance Evaluation 

2.5.1.  Model Fitting 

To tune the model parameters (𝛼𝛼, 𝑘𝑘), we adopted a simple grid search in combination with 5-fold 
cross-validation in our training set of N = 790 non-pregnant female donor samples.  We elected to 
use only these non-pregnant samples for model training and validation because contaminating fetal 
ccfDNA in maternal plasma has a different coverage profile due to underlying epigenomic 
differences7.  Training a model using data from pregnant female samples could lead to 
neighborhoods of bins that highly correlate with fetal fraction of ccfDNA and inadvertently over-
correct true fetal genomic signal in the coverage data.   

Under the cross-validation framework, we considered the samples within 𝑿𝑿 to be the mode of 
cross-validation, such that the columns of 𝑿𝑿 were split into folds for purposes of contributing to 
𝑫𝑫𝜶𝜶 or to performance evaluation.  We set the potential tuning parameter values to be 𝑘𝑘 ∈
(5, … ,300) at increments of 5 and 𝛼𝛼 ∈ (0,0.001,0.01,0.1,0.25,0.5,0.75,1), such that 𝛼𝛼 = 0,1 
respectively denote models based entirely on 𝑿𝑿 or 𝒀𝒀, respectively. We defined our loss function 
for tuning as the mean absolute error (MAE) of the individual out-of-fold sample coverage profiles 
across samples, such that 𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑁𝑁×𝐵𝐵
∑ ∑ |𝑥𝑥𝑙𝑙,𝑏𝑏 − 𝑥𝑥�𝑙𝑙,𝑏𝑏|𝐵𝐵

𝑏𝑏=1
𝑁𝑁
𝑙𝑙=1 .  A final model parameterization was 

then selected based on best cross-validated performance and fit on the complete training data. 
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2.5.2.  Profile Correction of NIPS Samples 

To characterize maternal ccfDNA coverage profile bias correction performance, we considered 
N=476 available clinical NIPS samples ostensibly free of trisomies per previously reported 
screening results.  The applied modes were based on training of all available NPP data.  We 
considered the within-sample median absolute deviation about the median (MAD), a commonly 
used metric to characterize sample coverage variability in CNV analysis of WGS data, as a 
sample-level performance metric for coverage profile correction.  As a baseline comparator 
method for coverage correction, we also performed standard within-sample annotation-based 
coverage correction described in Section 2.3. 

2.5.3.  Fetal trisomy detection 

In addition to variability reduction, we want to ensure our approach preserves and potentially 
improves true positive signals relative to standard coverage profile correction methods.  In NIPS, 
we typically derive chromosome-wise proportions of coverage profiles to determine the presence 
or absence of common fetal trisomies (i.e., 13, 18, and 21).  That is, for a given sample bin 
coverage vector 𝒙𝒙 and chromosome 𝑐𝑐, we define proportion 𝜋𝜋𝑐𝑐 =

∑ 𝑥𝑥𝑏𝑏𝑏𝑏∈𝒞𝒞𝑐𝑐
∑ 𝑥𝑥𝑘𝑘𝑘𝑘  

 where 𝒞𝒞𝑐𝑐 is the set of 
bins that correspond to chromosome 𝑐𝑐 and ∑ 𝜋𝜋𝑐𝑐 = 122

𝑐𝑐=1 .  We considered the simple Z-score 
approach for trisomy detection9, such that a large fixed set of reference normal NIPS samples free 
of trisomies is used to characterize population distributional properties about 𝜋𝜋𝑐𝑐 (i.e., mean 𝜇𝜇𝑐𝑐 and 
standard deviation 𝑆𝑆𝐷𝐷𝑐𝑐) for trisomy-prone chromosomes.  Then, the screening test statistic is 
defined as 𝑍𝑍𝑐𝑐 = 𝜋𝜋𝑐𝑐−𝜇𝜇�𝑐𝑐

𝑆𝑆𝑆𝑆�𝑐𝑐
 .  For our purposes, we randomly selected 300 negative NIPS samples to 

serve as the reference set.  Trisomy screening Z-scores were then calculated for the remaining 176 
negative samples along with 145 positive trisomy samples (10 Trisomy 13, 41 Trisomy 18, 104 
Trisomy 21).  This contrasts WISECONDOR’s strictly within-sample inference for trisomy, which 
is based on a Stouffer’s combined Z approach and requires explicit tuning of a decision threshold. 

Screening performance for our available NIPS samples already achieves near perfect 
discrimination using standard coverage profile correction methods due to imposed quality control 
standards (e.g., minimum sufficient fetal fraction).  To assess significant signal improvement (i.e., 
larger Z-scores for positive cases), we alternatively performed a Wilcoxon signed rank test of the 
paired Z-scores under each coverage correction approach by trisomy.  Evidence of increased Z-
scores for positive cases (but not in controls) would indicate that existing thresholds could be 
relaxed, reducing the number of quality control failures and improving overall assay 
sensitivity/specificity. 

2.6.  Code availability 

All analyses were performed using R version 3.5.2 (R Core Team, Vienna, Austria).  Relevant R 
code is made publicly available at https://github.com/nblarson/ccfdna_coverage.git. 
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3.  Results 

3.1.  Simulation Results 

The MAE performance measures for the non-pregnant donor data are presented in Figure 2 for the 
unweighted kNN approach across the considered tuning parameter values.  Results were highly 
comparable to the weighted approach, with a median difference in MAE of 1.0E-05 in favor of the 
weighted method (range: 0 – 1.8E-04).  The optimal tuning parameter settings were also the same 
for both types of approaches (𝛼𝛼 = 0.01 and 𝑘𝑘 = 150), which also led to nearly identical cross-
validation performance results (MAE = 0.04134 for both methods).  In contrast, using the same 
𝑘𝑘 = 150, performance for 𝛼𝛼 = 0 and 𝛼𝛼 = 1 were respectively 0.04137 and 0.06816.  Overall, 
these results indicate that the bins were very densely arranged in the feature space, as the selected 
𝑘𝑘 is quite large and the weighted kNN demonstrated modest performance gains.  Moreover, the 
amount of available training data was largely sufficient to capture bin-to-bin dissimilarities, with 
the kNN approach benefitting from a small degree of “regularization” afforded by the annotation-
based dissimilarity in our multi-distance learning approach, as indicated by the small value of 𝛼𝛼 
selected for the final models and the modest difference in MAE relative to 𝛼𝛼 = 0.  
 

 
Fig. 2.  Cross-validated MAE measures for unweighted kNN approach.  Figure is zoomed in to demonstrate separation 

across alpha values for best performing settings.  Vertical dotted line indicates optimal 𝑘𝑘 for 𝛼𝛼 = 0.01. 
 
To explore conditions of substantially reduced availability of training data, we additionally 

performed the same kNN model training with 10 random subsets of 50 NPP samples.  The mean 
(range) of optimal tuning parameters was 𝑘𝑘 = 155 (100-195) and 𝛼𝛼 = 0.14 (0.1-0.5), with mean 
MAE = 0.0419 (range: 0.0420-0.491).  These results follow intuition that a larger value of 𝛼𝛼 
would be selected in model training when more limited information is available in 𝑿𝑿, and 
furthermore illustrate that good performance can be achieved with relatively few training samples. 
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3.2.  Coverage correction 

There were 476 negative trisomy NIPS samples available for comparative performance analysis.  
Using the wkNN with tuning parameters selected via the cross-validation results in Section 3.1, 
we derived corrected coverage profiles and compared them to results based on the annotation-
based GAM model.  Overall, we observed a median single-sample MAD reduction of 38.7% 
relative to the GAM regression approach, with the sample MAD consistently lower using our 
proposed wkNN method (range in MAD reduction:  26.5-53.5%).  Further summary statistics of 
these results are presented in Table 1.   

 
Comparison of individual coverage profiles also demonstrated substantial smoothing effects of 

both variability and bias relative to the GAM approach.  An illustrated example of typical 
coverage profile improvement (MAD reduction:  34.2%) is presented in Figure 3 for the trisomy 
prone chromosomes 13, 18 and 21. 
 

 
Fig. 3.  Corrected 50 kb bin coverage profiles using the GAM approach (top) vs. the proposed wkNN model (bottom) 

for an example negative trisomy NIPS test sample for chromosomes 13, 18, and 21 (columns). 
 

Table 1.  Profile coverage correction MAD summaries for GAM and wkNN methods. 

MAD (N = 476) GAM Model wkNN Model % Reduction 
Minimum 0.072 0.041 26.5 
1st Quartile 0.081 0.049 36.3 
Mean 0.085 0.051 38.7 
Median 0.085 0.052 38.7 
3rd Quartile 0.089 0.055 41.4 
Maximum 0.118 0.075 53.5 
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3.3.  Trisomy detection 

A total of 300 negative trisomy NIPS samples were randomly selected to serve as a reference set 
for deriving estimates of 𝜇𝜇𝑐𝑐 and 𝑆𝑆𝐷𝐷𝑐𝑐 for 𝑐𝑐 = 13,18,21.  Corresponding Z-scores were generated 
for 176 negative trisomy samples and the 141 positive trisomy samples using chromosome 
proportions derived from corrected coverage profiles under each method (GAM vs wkNN).  
Boxplots of the Z-scores for the three chromosomes by trisomy status and the method of coverage 
profile used are depicted in Figure 4.  Trisomy Z-scores among negative samples were highly 
correlated across method (Pearson 𝜌𝜌>0.69 for each chromosome), while signed-rank testing for 
increased positive case Z-scores were significant when assessed separately for all three 
chromosomes (all p-values < 0.0005).  Results for trisomy 13 demonstrated the most substantial 
improvement, with a median Z-score increase of 7.08 among positive cases, and only four positive 
trisomy case Z-scores were higher for the GAM corrected coverage profiles relative to the wkNN 
approach.  None of these four cases would have resulted in different NIPS results (all 𝑍𝑍>6.0). 
 

Fig. 4. Boxplots of Z-scores used for trisomy screening, separated by method (GAM vs wkNN), chromosome, and 
trisomy status.  Typical screening threshold values of (-3,3) are depicted by dotted horizontal lines. 

4.  Discussion 

In this paper, we proposed a computationally efficient approach to within-sample coverage profile 
bias correction for shallow-depth ccfDNA WGS.  The noted inter- and intra-sample heterogeneity 
of these coverage profiles make the identification of even large structural alterations challenging 
in applications where the mutation frequency is anticipated to be low.  Adopting similar principles 
to those proposed for large-scale micro-duplication/deletion detection, we defined a straight-
forward kNN-type implementation toward leveraging empirical and annotation-based measures of 
genomic bin dissimilarity data under a multi-distance learning framework.  In contrast to standard 
GC-content correction procedures implemented via GAM methods, this approach allows for the 
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control of known and latent sources of coverage variability, using genomic annotation as a manner 
of regularizing empirical measures of dissimilarity in retrospective data. 

Relative to the regression-based coverage profile correction method based solely on genomic 
annotation, the wkNN approach demonstrated substantial improvement in both coverage profile 
variability reduction and improved detection of positive fetal trisomies.  Although overall 
screening performance was already nearly perfect, the increased discrimination distance between 
positive and negative cases indicates improved trisomy sensitivity and specificity at lower fetal 
fractions.  Thus, adopting these types of coverage correction procedures should render the NIPS 
assay more robust to random fluctuations in sample fetal fractions and improve reference sample-
based NIPS analyses.  

As noted above, our methods are conceptually similar to those proposed in WISECONDOR, 
albeit differing in large part by the approach to bin size and the perspective by which inference 
about how trisomy detection in NIPS is conducted.  Our focus here was to adopt these methods in 
the context of coverage profile bias correction for downstream analyses using established NIPS 
inference methods.  Additional work is necessary to discern which approach ultimately performs 
better, as our strategy can be coupled with a variety of other methods that are based on normal 
sample reference sets9.  We are additionally exploring how valuable our methods are in improving 
regional fetal signal for fetal fraction prediction training14, which necessitates these smaller bin 
sizes.  Finally, kd-tree querying of nearest neighbors is generally most effective under relatively 
small feature dimensionality.  Although our methods were feasibly implemented even under 
training sample sizes >700, more advanced parameter tuning and repeated cross-validation could 
be computationally burdensome.  Column-wise data dimensionality reduction (e.g., PCA) could 
significantly alleviate this by identifying leading “eigen-samples” with large coverage variability.   

A number of limitations and potential extensions warrant mention.  The data used to derive our 
models were from healthy female donor plasma, which negates the ability to provide coverage 
profile correction for chromosome Y.  Male donor data would be useful for improving 
chromosome Y correction as well as sex aneuploidy detection.  Alternative machine learning 
strategies may also provide more accurate coverage correction performance if they were trained 
for each individual bin, although this would require fitting and validating 𝐵𝐵 separate models.  
Sophisticated data dimensionality reduction methods, such as autoencoders, could also prove 
useful and warrant investigation. The grid search over values of 𝛼𝛼 was fairly crude, and additional 
research improving how to tune 𝛼𝛼 could lead to improved coverage profile correction.  Selected 
genomic bin size may heavily influence overall performance, particularly if smaller bins (e.g., 5-
10 kb) are used instead of 50 kb.  Finally, it is not clear how generalizable trained models are 
across external labs, where differences in sequencing conditions may yield different inter-bin 
correlation patterns.  Further investigation into genomic annotations shared by neighboring bins 
may elucidate characteristics that contribute to the observed coverage biases of ccfDNA WGS. 
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